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Shock waves in dilute bubbly liquids
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The propagation of weak shock waves in liquids containing a small concentration of
gas bubbles is studied theoretically on the basis of a mathematical model that contains
all — and only - the effects that contribute to first order in the gas volume fraction. In
particular, the thermal exchange between the gas bubbles and the liquid is described
accurately. This aspect of the theory emerges as its most significant component,
relegating effects such as the relative motion between the phases to roles of minor
importance. Comparison with experimental results substantiates the accuracy of the
model for shock waves that have had time to broaden from an initial sharp front to a
more diffuse profile. For shock waves closer to inception, marked differences are found
between theory and experiment. The same problem affects all other published
theoretical treatments. It is concluded that some as yet poorly understood mechanism
governs the early-time behaviour of shock waves in bubbly liquids.

1. Introduction

Among multi-phase systems, liquids containing gas bubbles have some unique
features that render them particularly interesting. In the first place, even a minute
bubble concentration greatly increases the compressibility of the medium and has
therefore a drastic effect on its properties. Secondly, compared with suspensions,
emulsions, or fluidized beds, the inhomogeneities of bubbly liquids — the bubbles —
have a particularly rich internal structure that endows the medium with a strikingly
complex behaviour even at dilute concentrations. The latter feature justifies the
approach taken in this paper which constitutes in a certain sense a reversal of the one
common in multi-phase flows in which the focus is on the average behaviour of the
system rather than on the micromechanics of the disperse phase.

Here we are not so much interested in ‘improving’ two-phase flow models by
incorporating, on the basis of physical intuition, specific features such as inter-phase
drag or mutual interactions among the bubbles. Rather, our intent is to investigate how
far a model mathematically correct to first order in the gas volume fraction can go in
explaining the observed behaviour of bubbly liquids. While the formulation of an (or
the) ‘ultimate’ model must of course remain the final objective of theoretical research
in multi-phase flow, it is useful to establish a baseline for the strengths and limitations
of the presently available rigorous models. As a consequence of this premise, our model
for the gas-liquid mixture, although correct in the dilute limit we consider, is
comparatively simple, while the bubbles are described in detail. This approach is
justified by the fact that the internal thermo-fluid mechanics of the gas is essentially
independent of the bubble concentration so that a model of bubbly liquids should
incorporate the effects that are known to be important even at zero gas volume
fractions, i.e. in the case of single bubbles.
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FiGUrRe 1. Typical waveforms observed during the propagation of shocks in bubbly liquids
(reproduced with permission from Noordzi) & van Wijngaarden 1974). The three types are referred
to as 4-, B-, and C-type waves.

Figure 1 (from Noordzij & van Wijngaarden 1974) shows the three typical pressure
waveforms observed in a ‘ shock-tube’ experiment with a bubbly liquid. The top, highly
oscillatory one (type A) is usually found near the boundary at which the shock is
introduced. The other two (types B and C) represent later stages in the evolution of the
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wave. Our results indicate that the inclusion of a detailed modelling of the gas thermal
behaviour is sufficient to give a satisfactory agreement with the data for the B- and C-
type shocks taken by Noordzij (1973) in mixtures with a maximum gas volume fraction
of the order of 3%. Significant discrepancies, however, are found in the case of 4
shocks.

To study the origin of these discrepancies, in §6 we consider the magnitude of some
of the effects that would typically be included in more developed models. As with
several previous investigations, the conclusion is that, while data can be matched by
suitably adjusting parameters, the values required are outside the expected range and,
in some cases, even have the opposite sign. As none of the physical processes studied
so far by ourselves or others seems able to account for the differences with experiment,
their origin appears to be due to as yet unexplained mechanisms.

Much of the previous work on shock waves in bubbly liquids is referenced and
discussed in §§6 and 7. It is however appropriate to mention here the seminal studies
of Noordzij & van Wijngaarden (1974) and Nigmatulin & Shagapov (1974). Nigmatulin
and co-workers have published a large number of papers on this problem which have
recently been summarized in Nigmatulin (1991). In particular, Nigmatulin was the first
to recognize the importance of thermal effects on the shock dynamics. Beylich &
Gilhan (1990) have also published new data on A-type shocks and made an effort to
incorporate in their model many physical effects.

2. Mathematical model

Caflisch et al. (1985) obtained the following mathematical formulation for the
description of pressure waves in a bubbly liquid:

1 oP OR

— 4 V.u=4mnR:—
PR, +V-u=4nnR TR (D
pL%Et-i—VP = 0. 2

Here P and u are the average pressure and velocity in the mixture, p; and ¢, are the
(undisturbed) density and speed of sound of the pure liquid, # is the number of bubbles
per unit volume, and R is their radius. These two equations express respectively the
conservation of mass and momentum in the mixture. It should be noted that, in (1),
R = R(x, r) must be understood as a field variable. This equation has been written
assuming that all the bubbles in a macroscopic volume element surrounding x have the
same radius. Extensions to mixtures of different sizes are straightforward in principle,
although the added computational requirement would be significant. For this reason
here we only consider bubbles having the same undisturbed radius. Caflisch et al.
(1985) show that (1) and (2) have an error o( ), where f is the gas volume fraction given
by

B = 3nR®n. 3

In view of the fact (shown in §6 below) that variations in »n are O(#), (1) can also be
written, to the same accuracy, as

1 oP op
—_ — 4V.u=-L,
pct Ot “=u
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An important point about the previous model that should be explicitly noted is the
fact that, in spite of their superficial appearance, the equations have not been
linearized. The right-hand sides of (1) or (4) are to be regarded as genuinely nonlinear
so that the model is applicable, in the dilute limit, also to nonlinear waves. This point
can be made clearer by the following qualitative argument. Consider a one-dimensional
situation with the bubbly liquid occupying a tube of cross-sectional area S and let a
piston execute oscillatory motion with amplitude 4 and frequency w. The volume
swept by the piston is of the order of SA4 and, neglecting liquid compressibility, this
volume must equal the combined volume change of the bubbles. Since the speed of
signals c,, in the mixture is finite, the only bubbles that can participate are those within
a distance of the order of the wavelength A4 ~ ¢,,/w from the piston. Their number is
of the order of nAS and, if each one of them undergoes a volume change Av, we must
have

AS ~ nAS Av, %)
from which, with Av ~ R*AR, A/A ~ SAR/R, 6)
and also, since u ~ Aw, u/c,, ~ SAR/R. (7

This argument, which contains the essential physics of the more formal scaling analysis
presented by Caflisch et al., shows that, for small g, even large-amplitude bubble
motions only result in a small-amplitude motion of the mixture as a whole.

The analysis of Caflisch et al. also shows that the radius R appearing in (1) must be
determined from the radial equation of motion for an isolated bubble immersed in the
ambient pressure field P. Here we use the Keller equation (Keller & Kolodner 1956;
Keller & Miksis 1980; Prosperetti & Lezzi 1986) that includes in an aproximate way
the effects of liquid compressibility:

1 0R\ _*R 3 1 OR\(OR 1 1 aR R 0
—— )RS +2 =— @
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The pressure in the liquid at the bubble surface py is related to the internal gas pressure
p by the balance of normal stresses across the bubble interface

P =Pyttt ©)

where o and p, are the surface tension and liquid viscosity. At normal pressures and
for liquids far from the boiling point, such as water at room temperature, the partial
pressure of the vapour is very small and can be neglected so that p in (9) may be taken
to be just the gas pressure. It is clear that (8) reduces to the Rayleigh—Plesset equation
in the incompressible limit ¢, > c0. In equilibrium conditions (index a) (8) and (9) show
that the bubble internal pressure is given by

Do =P, +20/R,. (10)

It has been shown by Nigmatulin and co-workers (Nigmatulin & Khabeev 1974,
1977; Nagiev & Khabeev 1979; Nigmatulin, Khabeev & Nagiev 1981) that, with the
assumptions of spatial uniformity of the pressure and perfect nature of the gas, one has

oT

3 aR
2 lo-vxd] —w. (1
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where K and vy are the gas thermal conductivity and ratio of specific heats. The
temperature field T in the gas is obtained from the energy equation that, with the
previous assumptions, becomes (see e.g. Prosperetti, Crum & Commander 1988)

N

In (11) and (12) r is the radial coordinate measured from the centre of the bubble. It
may be noted that, in addition to r and ¢, T also depends on the location x of the centre
of the particular bubble being considered. It has been shown in Prosperetti ez al. (1988)
and in Kamath, Prosperetti & Egolfopoulos (1993) that the liquid temperature at the
bubble wall remains substantially unaffected by the motion of the bubble. In other
words, the specific heat of the liquid can be taken to be effectively infinite, so that
consideration of the liquid temperature field is unnecessary.
Equation (11) can be recast in the form

2 oRm =30~ DRKYD | (13)

=R

which shows that, in the absence of heat exchange at the bubble wall, the gas follows
the adiabatic law. It will be clear from the following, however, that the right-hand side
of this equation has a crucial effect on the propagation of pressure waves in bubbly
liquids and apparently cannot be approximated in any simple way.

The numerical treatment of the previous model has been described in detail in
Prosperetti & Kim (1987) and Kamath & Prosperetti (1989) for the unsteady one-
dimensional problems considered below. The average equations (1) and (2) are
discretized on a staggered finite-difference grid, while a spectral method is used for the
energy equation in the gas at each station x. The procedure is second-order accurate
both in space and in time. The standard tests of convergence were satisfactorily
performed. As a further check, we have simulated the case shown in figure 6.4.5 of
Nigmatulin (1991, vol. 1, p. 40) finding excellent agreement. It was also explicitly
verified that the solutions to the initial-value problem evolved into the steady
waveforms calculated by the method of §4 below.

3. Unsteady one-dimensional shock waves

Before turning to the propagation of steady shock waves, which is the major focus
of the present study, we look briefly at unsteady one-dimensional waves to point out
the importance of a correct modelling of the gas thermo-fluid-dynamic behaviour.

The situation we model is typical of the experimental procedure used in the study of
shock waves in bubbly liquids. The mixture is initially in equilibrium and at rest. The
calculation is started at time ¢ = 0 with P = P, everywhere in the tube except in the
immediate proximity of the boundary x = 0. Here we set P equal to P, at the first node
and use a hyperbolic tangent profile to connect to P,. We have varied the thickness of
this initial transition layer from 2 to 20 computational cells and found a negligible
effect except very near x = 0. In particular, all the results shown below are insensitive
to this starting condition. Here and in the following the subscripts a and b refer to
conditions ahead of, and behind, the shock. The computational cells Ax are typically
10 mm long and the time step is such that UAr/Ax = 0.25, where U is the wave
velocity.
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FIGURE 2. (a) Computed liquid pressure P non-dimensionalized by the pressure P, ahead of the wave
as a function of position at several instants of time for a shock wave in a water—glycerin mixture
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We show in figure 2(a) the mixture pressure P as a function of position at several
instants of time between 591 and 106.3ms for R,=1.18 mm, g,=294%
(n, =4272m™®), P,/P, =1.05, P, = 0.123 MPa. The physical properties are those of
air at 20 °Cin a 50 % water—glycerin solution (y = 1.4, u, = 7.88 cP,p, = 1126 kg m™3,
¢, = 1481 m s7'). The pressure as a function of time at several positions between
x = 0.05 and 6.5 m from the boundary located at x = 0 is shown in figure 2(b). The
three different types of waveforms observed by Noordzij & van Wijngaarden (1974)
and reproduced in figure 1 are evident here. Initially the wave is oscillatory with short
periods and overshoots the level £,. In Noordzij & van Wijngaarden’s terminology, this
is the A4-type waveform. The last two to three profiles show instead a completely
smooth and monotonic wave structure, the C type. In between we encounter
intermediate profiles that exhibit fairly smooth oscillations. These profiles are labelled
B-type.

Qualitatively, this evolution matches very well that found in the experiments of
Noordzij & van Wingaarden. Contrary to their conclusion, however, and as
previously noted by Nigmatulin and co-workers, it is clear that it can also be found
without introducing a relative motion between the liquid and the bubbles. We shall
return to this point in greater detail in later sections.

It is interesting to compare the predictions of the model outlined in the previous
section with those of the one obtained by replacing the pressure equation (11) by the
simple polytropic law \

p (RN

wlw) =t 8
where « is the polytropic index. The same case as figure 2(b) simulated by using this
relation with x = 1 is shown in figure 2(c). The progression from A- to C-type waves
is suppressed by this crude modelling of the gas behaviour. Other values of « produce
qualitatively similar results (see also Tan & Bankoff 19844).

Since in our numerical method we do not take any precaution against the
numerically induced oscillations that often plague shock-wave calculations in
compressible fluids (see e.g. Beam & Warming 1976; Sod 1978), one must guard
against the possibility that the oscillatory structure in figure 2 is a numerical artifact.
We have satisfied ourselves that these oscillations are correct by repeating the
calculations with several different values of the space and time steps, to which the
numerically induced oscillations are sensitive.

It should be remarked that not all shocks evolve all the way from 4 to C type. In
the study of steady shocks that will be described in the following sections it will be seen
that the present model predicts a steady state of the C type only for very weak waves.
Stronger ones are found to settle down to a B type. We have encountered steady shocks
of the 4 type only in the case of very small bubbles that behave very nearly
isothermally. This feature renders the simple model (14) fairly accurate, and one can
therefore expect a behaviour similar to that shown in figure 2(c¢) in this case.

For other than very weak shocks, the transition from A to B and possibly C can take

containing air bubbles. The gas volume fraction is # = 2.94 %, the pressure ratio £,/ P, = 1.05, the
pressure ahead of the wave P, = 0.123 MPa, and the bubble radius R, = 1.18 mm. The wave is shown
at times 5.908, 11.82, 23.63, 35.45, 47.26, 59.08, 70.90, 82.71, 94.53, and 106.3 ms after the initiation
of the shock. (b) Liquid pressure as a function of time at several positions for the same shock as (a).
The traces shown are at distances of 0.050, 0.30, 0.70, 1.1, 1.5, 2.5, 3.5, 4.5, 5.5 and 6.5 m from the
boundary of the gas—liquid mixture. (¢) The same case as () but simulated with the isothermal
pressure-volume relation for the gas contained in the bubbles. Note the drastic alteration of the
waveforms.
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quite some distance and our analysis suggests that many of the experimental results
presented in the literature as steady shocks correspond in fact to still-evolving waves.

4. Steady waves

Consider one-dimensional waves of permanent form propagating from right to left
with constant velocity U so that in all the previous relations 9/9¢ - Ud/0x. The bubble
number density » is a constant throughout the system. Ahead of the wave (subscript
a) the mixture velocity vanishes, while the pressure, volume fraction, and bubble radius
are P, f,, and R,. Upon integration of (4) we thus find

u/U=(P,—P)/(prc1)+ [~ fa (15)
and, upon integration of (2),

proUu+P=P,. (16)
After elimination of the mixture velocity u we have
(1=U?/c)(P—=P)+p, UN—p.) =0, (17)
which, substituted into (15), gives
u/U=(1=U/cp) ™ (B—P)- (18)

This relation explicitly shows the mixture velocity to be a quantity of order 4. This
circumstance justifies the use in (2) of p, in place of the mixture density, the difference
being a quantity of order f.

Behind the wave (index b) the pressure is P,, the radius R,, and the volume fraction
B, = 3nR; n. Inserting these values in (17) we find

U2~ B —P,
i Pb—Pa_chi(ﬂb_ﬂa)'

Since after the passage of the wave the bubbles are again in equilibrium and at the same
temperature as the liquid, we have

(P,+20/R,) R} = (P,+20/R,) RS (20)

For given conditions upstream of the wave, with this relation, the wave velocity U can
be expressed solely in terms of the downstream pressure P,. For negligible surface
tension effects, the explicit expression is

(19)

v . = £ (21)
¢t pLcLBat B pLcifpt R

Unless g, and g, are extremely small, the second term in each denominator is much
smaller than the first one so that

2 P, P
% r— e A (22)
L PLCLBy  PLCLPy
Up to a term of order g7, the first expression coincides with that given by Campbell &
Pitcher (1958) for isothermal bubble behaviour. In the linear case P,— P, <€ P,, (22)
reduces to the well-known low-frequency result (see e.g. van Wijngaarden 1972)

U* = F,/(pLBo)- (23)
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F1GURE 3. Example of a computed steady B-type waveform for P,/P, = 1.32, f = 1%, P, = 0.1 MPa,
R, = 0.8 mm. The graphs are in terms of a dimensional time defined by x/U, with the steady shock
speed U = 108 m s™* as obtained from (21). The oscillations of the wavefront are not very marked in
(a), showing the liquid pressure, but they are very clear in (b), showing the bubble radial velocity. The
dashed line in (a) (right vertical scale) is the effective polytropic index defined by (29).

With U determined from (19), (17) gives the pressure field throughout the wave in
terms of the volume fraction or, since # is a constant to the present approximation, in
terms of the local bubble radius, as

(B~ P)(1=p/B) (P, +20/R,) b
Pb_Pa+20'(1/Rb_1/Ra) ‘

With the neglect of surface tension effects, this relation becomes

P P+ B(1—p/f,). (25)

The problem is therefore reduced to the integration of the radial equation (8) which,
with primes denoting differentiation with respect to x, may be written

P=P+

U 3 U 2 1 U R 3
Ny - "+ [1———R|R?%= —R+—= —P 26
(1 CLR)RR +2(1 3CLR)R PLU2(1+CLR +C ax)(pB : 20)
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FiGURE 4. Example of a computed steady C-type waveform. (a) The parameter values are as for figure
3 except that the wave strength is £,/P, = 1.15. Here the shock wave speed is U = 101 m s™. (b) The
parameter values are as for figure 3 except that the bubble radius is R, = 5 mm. Here the shock wave
speed is U = 108 m s™1. The dashed line in (4) and (b) (right vertical scale) is the effective polytropic
index defined by (29).

with p, given by (9) and P by (24). The internal pressure p must of course be
determined from the steady form of (11), i.e.

3 oT
=l (y-1)K=—| —vypUR 2
Uy = 3|~ DKSE| ] @7)
after integration of the energy equation
v pf,.eT 1 or |, ., |oT ,
Pl p L (y—1)K——1 = =V. .
— T{Uax+'yp [('y l)Kar stUp > Up (KVT) (28)

Before turning to an analysis of the structure of the shock waves according to this
model we show some examples, all computed with the same values of the physical
properties used for figures 2(a) and 2(b). Figure 3 is a steady wave profile of the B type,
which is found for P/P, =132, $=1%, R, = 0.8 mm, P, = 0.1 MPa. The natural
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FIGURE 5. Bubble pressure-volume relation for a B-type shock with R, =1 mm, P, = 0.1 MPa,
P/P =15, f=1% (solid line). The dashed line is for an isothermal compression of the bubble as
it traverses the wave, while the dotted lines indicate the adiabatic relation based on conditions ahead
of the wave (upper line) and behind the wave (lower line). The steady wave profile for this case is
shown in figure 12.

frequencies of the bubbles upstream and downstream of the wave are 3.78 and
4.25 kHz respectively. The graph is in terms of a dimensional time defined by x/ U, with
U =108 ms™ in this case. The oscillations of the wavefront are not very marked in
figure 3(a), showing the liquid pressure, but they become very clear if the bubble radial
velocity along the wave is plotted, as in figure 3(b). This wave can be modified to
assume a C-type waveform either by decreasing the shock strength, as in figure 4(q)
(B,/P, =115 =1%, P,=0.1 MPa, R, = 0.8 mm, natural frequencies 3.78 and
478 kHz, U= 101 ms™), or by increasing the bubble radius as in figure 4(b)
(B/P, =132, f=1%, P,=0.1MPa, R, =5mm, natural frequencies 0.611 and
0.770 kHz, U = 108 m s™!). We shall return to an explanation of these differences in
the next section. Further examples of B-type waves are shown in figures 12 and 14.
An interesting insight into the thermal behaviour of the bubbles as they traverse the
wave can be gained by defining an ‘effective’ polytropic index «, reversing (14), i.e.

__1llog(p/p,)
e = "3Tog(R/R,) @9

This quantity, which represents the value of the polytropic index that would be needed
to reproduce the instantaneous computed values of p and R, is shown by the dashed
lines in figures 3 and 4. The range of variation of «, is quite wide and there is little hope
of obtaining a realistic behaviour of the wave with a single value for this quantity.
The solid line in figure S illustrates the pressure-volume relation for a B-type shock
with R, = 1 mm, P, = 0.1 MPa, B /P, = 1.5, 8 = 1 %. (The wave profile for this case
is shown in figure 12.) The dashed line corresponds to isothermal compression from
upstream to downstream conditions, and the two dotted lines are the adiabatic
relations based on the initial and final states. If one writes a polytropic relation based
on the state upstream of the wave, as in (29), it is clear that the actual process is
intermediate between isothermal and adiabatic so that 1 < «, < y as in figures 3 and



360 M. Watanabe and A. Prosperetti

4. If, however, one were to base a polytropic relation on the downstream state, the
actual process would be outside the region bounded by the adiabatic and isothermal
lines and one would thus need a polytropic index of less than 1 to reproduce the correct
pressure—volume curve. To clarify this point note that, from the equation of state of
perfect gases, one may write pV* = NZTV*! with V the bubble volume, N the
number of moles, and # the universal gas constant. If x > 1 and the bubble is
compressed, T has to increase in order for pV’* to remain constant. This is the normal
behaviour. However, if « < 1, T decreases upon a compression. This is what must
happen near the back of the wave where the bubbles, heated by compression in the first
part of the wave, cool off by conduction and are further compressed to their final
equilibrium radius behind the wave. These considerations are confirmed by the analysis
that follows.
4.1. Simplified models

The main features of our results are unchanged by omitting the compressibility of the
liquid and surface tension effects. Hence, for simplicity, in the asymptotic study of the
front and back of the wave that follows, we shall use the Rayleigh—Plesset equation,
rather than Keller’s, with the average pressure P given by (25) so that

3
p, URR" +2R") =p—4’u—1’é({R’—Pa—Pb(l—R;). (30)

For the purpose of comparing with earlier results, we also write the corresponding
equation that would hold in the case of polytropic gas behaviour, (14), and constant
effective damping y, analogous to the viscous damping, namely

A U
R

R 3«
p URR +3R") = ()

a

R3
R —P,—P (1—“). (31)
b R;

4.2, The shock front
To study the behaviour of the shock front, following van Wijngaarden (1970), we let
R=R,(1+X), p=P(l+9g. (32)

In the second expression we write P, in place of p, consistently with the neglect of
surface tension effects (cf. (10)). Upon linearization of (30) or (31) about R,, P, one
finds

pLUREX" = P,g—4u, UX'+3P, X. (33)
In the polytropic case ¢ is given by
g =—3«X, (34)
and the radial equation has solutions of the form
X ocexp A, x, (35)
with UA,=—b, .+ [bi'e+pi};33 (%—K)T/z, (36)
where b, , is the viscous damping parameter
b, =2u./(p RY) (37)

evaluated in correspondence of the effective viscosity p, rather than x, and based on
the bubble radius ahead of the wave (see e.g. Devin 1959; Plesset & Prosperetti 1977;
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Prosperetti 1991). For a wave progressing from right to left all disturbances must tend
to zero as x—— oo so that it is necessary that Re A, > 0 for a physically acceptable
solution to exist. Clearly this is only possible if £,/P, > x which, for any value « > 1,
imposes unphysical restrictions on the strength of the wave. The only possibility is
therefore x = 1, i.e. isothermal behaviour (van Wijngaarden 1970). This conclusion
however, is also unsatisfactory, as one would expect the bubble behaviour to depend
on the shock strength although, in the framework of the polytropic model, no such
dependence is available.

It is not possible to obtain a closed-form expression for the pressure correction ¢
according to the complex model of (11) and (12). However, if a solution is sought by
means of the Fourier transform (understood in the sense of generalized functions), the
result is that the product of a (single-valued) function of the conjugate variable times
the transform of X equals zero. This implies that the transform of X is a linear
combination of delta distributions centred at the zeros of that function, so that X itself
must be a linear combination of exponentials. This argument justifies looking for
solutions of (33) of the same form (35) as for the polytropic model. In this way we
find the following equation for the auxiliary dimensionless quantity Q = (R% UA,/x)"*:

2

g Zuge il @-3|-o. (38)
X PLX F,

yQ2?

where v, = ui/pi, and - k() = G0 T Geom =)

(39)

has essentially the meaning of an ‘equivalent’ polytropic index. In these relations y
denotes the thermal diffusivity of the gas. The characteristic equation (38) coincides
with that given by Nigmatulin (1991, p. 49, vol. 1) aside from the — usually small —
viscous contribution that was not included in that work. If the bubble radius is not too
small, the fraction multiplying the square bracket is large so that «, is close to B,/ P,,
at least as long as P,/P, < y.

As before, only roots such that Re A, > 0 are acceptable. Approximate solutions of
(38) are readily found for small and large values of the quantity €. In the first case one
has

o~ 1+ X Lo (40)
15y
1/2
so that Ur, = —(b,+b,,)+ [(bv +b,.,)%+ 32P“ (E— 1)] , 41)
RapL Pa
where o = r=1 & (42)
10y prx

is the thermal damping parameter for nearly isothermal conditions (Prosperetti 1984,
1991) and b, is as defined by (37) with the correct liquid viscosity x,. In view of the
large numerical value of P,, unless the bubble radius is exceedingly small (i.e. in most
conditions of interest), b, < b,,,. It is readily seen that, for £2 to be so small that this
approximation is legitimate, P,/ P, must be close to 1, i.e. the shock must be weak. It
is interesting to note that the result (41) implies that, in this limit of weak shocks, X
approximately satisfies the equation

pL REUX" = =3P, X—2Q2u, +p, R2b,,,) UX'+3P, X. (43)
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Upon comparison with (33), (34), it is seen that the gas behaviour is approximately
isothermal, in agreement with (40), but with a damping increased by the relatively large
amount b,,,.

In the opposite limit of large values of £ one readily finds

Ky RV, (44)
3P P 1/2
~ | H2 a {Zb__ —
so that U, ~ [bv + Rp, ( P 7)] b,, (45)

and for this result to correspond to a large value of £ with ReA, > 0, it is necessary
that B,/ P, > v, i.e. that the shock be (relatively) strong. The equation satisfied by X in
this case is, in place of (43),

pp REUX” = —3yP, X —4u, UX’ +3P,X. (46)

This shows that thermal damping effects have become negligible and that the gas
behaves adiabatically as implied by (44).

It may be shown by an application of the Nyquist criterion that (38) possesses only
one acceptable root (Nigmatulin 1991, p. 50, vol. 1) of which (41) and (45) are the limit
values. All other roots have Re A, < 0 and are therefore unphysical. As before, we thus
find exponentially growing solutions near the shock front, but their behaviour
conforms now much better to physical intuition.

It is also interesting to note that the value of «, given by (39) is in very close
agreement with the initial constant value of the ‘effective’ polytropic index (29)
determined numerically near the wave front and shown by the dashed lines in figures
3(a) and 4. The numerical values are 1.273, 1.149, and 1.313 in the three cases, and the
corresponding ones given by (39) are 1.281, 1.149, and 1.315.

4.3. The back of the shock
We may proceed in a similar way to study the shock structure near the back. We let

R=R/(1+X), p=FR(1+9. (47)
For the polytropic model (31) the equation corresponding to (33) is
pL UPREX" = —3kP, X—4u, UX'+3P, X, (48)
from which, with X oc exp (—A, x),
3P PN\T2
= +1b2 21—k

where b, , is computed from (37) with R, in place of R, and g, in place of x,. The
physical condition that the wave must leave behind a medium at rest requires that
Re A, > 0, and therefore both roots are acceptable. It is clear from this result that, with
the polytropic model, the back of the wave may exhibit the oscillations typical of the
A-type shock structure when Im A, # 0, i.e. when

3P, (kP
b2, <8 (—”—1), (50
' pLRlza Pa )

which will be verified for sufficiently strong shocks. When this inequality is not
satisfied, the back of the wave is smooth as for the B- or C-type shocks.
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If the gas pressure is obtained from (11), (12) we find, in place of (38),

o g 30K [ (.Q)——] 0, (51)
X P,
where Q2 = (R2UR,/x)"? and
2
Q) = e (52)

@3- (QcotQ—1)

The fraction multiplying the term in square brackets in (51) is usually quite large so

that x, ~ P,/P, and, hence, «, < 1. For the three examples of figures 3 and 4 the values

of k, given by (51), (52) are 0.7575, 0.8695, 0.7575, respectively. Values obtained from

the full computation on the basis of a relation similar to (29) with p,, R, in place of p,,,

R, are instead 0.767, 0.870, and 0.786. The values for the first and third example are

very close since the pressure ratio is the same and the effect of bubble radius small.
For small © the approximation corresponding to (40) is

—1
Ky R 157/ Q3 (53)
P 1/2
and leads to UXx, = b +bm_[(b +b,,)+ 32 L (1 _L , (54)
Rypy, F,

where b, and b,,, are given by (37), (42) with R, P, in place of R,, P,. These two roots
are always real. The condition for their existence is that 2 be small, which will be the
case provided B,/ P, is close to 1, i.e. the shock is weak.

The characteristic equation (51) also possesses an infinity of other roots close to N,
with N =1,2,.... Approximations to these roots may be obtained by substituting
Q2 =nN+ein (51), (52) to find, for N » 1,

Y=l _3()/2 1) 5 R vyP, RE] 1
er3 N { — +3 |4y —1*O9y*+ 17y +9)— oL (> (55)
. pLX
from which —(nN)* 3 ; 7 (56)
X X 2
U2, = Ja2" x5 (V" (57)

More interestingly, (51) also possesses a pair of complex roots. When their modulus
is large, the argument is close to +3m or +2r so that one can approximately take
cot£2 ~ Fi from which

2\1/4 1/2 2 1/4
s (Gg) [ osb—g GRd T o
LRy (242 F, pPLX
These roots are of particular interest since they appear to be the only ones capable of
conferring an A-type structure to the back of the wave. For this to happen Re A, must
be small so that attenuation is not excessive and this asymptotic formula is not
applicable. However, it does indicate the potential presence of oscillatory solutions and

indeed we have found numerically that a prominent oscillatory structure near the back
of the wave appears for small bubbles as will be discussed in the next section. In this
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case, the wavelength of the oscillation found numerically is quite close to that
determined from the complex roots of (51).

5. A-, B-, and C-type steady shocks

We now turn to a consideration of the phase and group velocity of linear waves in
a bubbly liquid according to the present model. This will afford some insight into the
wave structure. Further details on the linear problem according to the present model
may be found in Commander & Prosperetti (1989) and Lu & Prosperetti (1994).

Upon linearization of the model equations presented in §2, for perturbations
proportional to expi(wt—kx), it is easy to obtain the following dispersion relation
(Commander & Prosperetti 1989):

) 4nw*R,n
2 wi—0*+2ibo’

(39)

where the index e is used to denote equilibrium conditions. For the complete model the
effective resonance frequency w, and damping parameter b are given by

2 _ P _ 20
DT LR (Re ? Repe) ’ (60)
_ 2/“L sze pe
b—pLR§+ 2 +2pLR§wIm(p’ 61)
where D= 3y (62)
~ 1-3(y—1)iD[(i/D)"*coth (i/D)**—1)’
with D = x/(wR?), (63)

the square of the ratio between the diffusion length and the bubble radius. For the
polytropic model the dispersion relation has the same form (59), but w, is given by

wy = 3xp,/(p, RY), (64)

and the last term in b, representing the damping due to thermal effects, is absent. These
seemingly slight differences have a profound effect on the dispersion relation,
particularly at the lower frequencies (i.e. below the bubble resonance frequency) of
concern here.

In the presence of dissipative processes one may define (at least) two different phase
velocities, one, w/Rek, appropriate for the boundary-value (or signalling) problem,
and one, Rew/k, appropriate for the initial-value problem. Much below the natural
frequency, however, the effects of damping are small and the two definitions lead to
nearly indistinguishable results. We use here the first definition appropriate for the
signalling problem which is more easily calculated.

A comparison of the phase velocity as given by the polytropic and complete
dispersion relations in the low-frequency region is shown in figure 6 for which the
parameters are those of the shock-front region of the example shown earlier in figure
3. Here the lower and upper dashed lines are the polytropic results for isothermal and
adiabatic motion, and the solid line is the complete model. The polytropic results start
nearly flat, and then decrease as the natural frequency is approached. Since the mixture
is stiffer if the bubbles compress adiabatically, the adiabatic line is above the isothermal
one. The complete model shows instead an increase of the phase velocity at first, a
maximum, and a subsequent decrease as w further approaches w,. This behaviour is
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FIGURE 6. Comparison among the linear phase velocities as given by the complete (solid line),
isothermal (lower dashed line), and adiabatic (upper dashed line) dispersion relations in the low-
frequency region. The parameter values are those of the shock-front region of the example of figure
3, L,=0.1MPa, p=1%, R, = 0.8 mm.

quite interesting and can be readily explained as follows. At near-zero frequencies the
bubbles behave isothermally. However, as the timescale of the motion shortens, heat
cannot freely diffuse in and out of the bubble and the ‘effective’ polytropic index
increases. The mixture then becomes stiffer and the phase velocity correspondingly
increases toward the adiabatic result. The larger the bubbles, the closer they approach
this adiabatic behaviour. At still higher values of w, the presence of the resonance
begins to become important: it is easier and easier to compress the mixture so that the
stiffness goes down and with it the phase velocity.

It appears likely that the characteristic structure of the B-type wave is due to this
rising and falling of the phase velocity at low frequencies and therefore cannot be
captured by any simplified model that does not possess this characteristic. To illustrate
this point we present figure 7, where we draw the phase ¥, and group ¥ velocities for
the state of the mixture near the front and near the back of the waves of figures 3 and
4 together with a horizontal line representing the speed of the shock. The definitions
of phase and group velocities used here are

1 Rek 1 dk
V.o e v R (63)

D g

and correspond therefore to the boundary-value problem, although the differences
with the initial-value problem are minor as noted before. Figure 7(a) (corresponding
to figure 3) is for a shock wave of the B type, and figures 7(b) and 7(c) (corresponding
to figures 4(a) and 4(b) respectively) are for shock waves of the C type.

It is well known that in many cases diagrams similar to those displayed in these
figures may be used to understand the structure of the front and back of shock waves
(see e.g. Lighthill 1978). The points where the shock speed crosses the phase velocity
lines correspond to sinusoidal wavelets propagating at the same speed as the shock.
Wavelets with the corresponding frequency and wavenumber can therefore form a
steady oscillatory pattern associated with the shock. If the shock dissipates energy
exclusively by radiation, these wavelets can exist near the back only if the corresponding
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FIGURE 7. Phase (solid lines) and group (dashed lines) velocities for the state of the mixture near the
front (lower pair of curves) and near the back (upper pair) of (@) the B shock of figure 3, (b) the C
shock of figure 4(a), and (c) the C shock of figure 4(4), in the low-frequency region. The dash-and-
dot line is the steady shock speed.
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group velocity is smaller than the shock velocity (so that energy is left behind), and near
the front only if the corresponding group velocity is greater than the shock velocity (so
that the energy can propagate upstream into the undisturbed medium). This argument
is not generally applicable in the presence of strong non-radiative dissipation
mechanisms, which is the case of present interest: even if a pattern of steady wavelets
is kinematically possible, the non-radiative dissipation of energy might be too strong
for it to sustain itself. However, while this condition may not be a sufficient criterion
for the presence of oscillatory structures associated with the shock, it clearly still
remains necessary. From figures 7(4) and 7(c), corresponding to C shocks, we see that
the conditions of the previous argument would be satisfied for very low frequencies (of
the order of 75 and 25 Hz for these examples) ahead of the shock, and for higher
frequencies (of the order of 2.53 and 0.517 kHz respectively) at the back. A close
examination of the numerical results for these nonlinear steady shocks reveals however
that no appreciable wave structure is present, a fact that is confirmed by the linear
analysis of the previous section.

If we now consider the dispersion relations for the B-shock case of figure 3, shown
in figure 7(a), we immediately recognize a major qualitative difference with the
previous ones, namely the fact that the shock speed is always greater than the phase
speed of the waves near its front. This explains the much steeper rise of the wave front
found in this case as compared with the previous one (cf. figures 3 and 44a). Consider
the regions with increasingly higher pressure that are encountered as one traverses the
wave from the front to the back. Approximately the local state of the mixture in each
one of these regions may be represented by a pair of phase and group velocity lines
intermediate between the front and back ones shown in figure 7(a). For a certain value
of the pressure, P,, say, the phase velocity curve reaches a maximum value equal to the
shock speed. Since phase and group velocities are equal at an extremal point of the
former, for the portion of the wave where P ~ P,, wavelets are possible for which both
the phase and group velocities equal the shock velocity. These wavelets can therefore
exist without losing energy due to radiation, and a B-type structure becomes possible.
On the basis of this argument, we propose that the criterion for the transition between
C- and B-type shocks is therefore

maxV, ;.. = U. (66)

When the maximum phase velocity of the wavelets near the shock’s front is smaller
than the shock velocity U, the shock is of the B type while, when it is greater, a C
structure is encountered.

This hypothesis may be strengthened by a consideration of the transient process by
which the shock becomes steady. In the typical experiments the initial perturbation is
short, with a corresponding high-frequency content. In the C case, all these high-
frequency wavelets either remain behind the shock or race ahead of it: the balance
between nonlinearity and dispersion is essential to maintain the integrity of the wave,
and the shock is thick. In the B case, on the other hand, no wavelets can escape from
the front of the shock which is therefore thin with an appreciable high-frequency
component.

These considerations may perhaps be put on a firmer quantitative footing by
application of one of the several asymptotic techniques developed for the study of
nonlinear waves (see e.g. Whitham 1974; Jeffrey & Kawahara 1982).

The criterion (66) for the existence of steady B- or C-type shocks cannot be put in
a simple analytic form. However, with the neglect of surface tension and viscous effects
and the use of suitable combinations of the variables, for each value of vy, it can be
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FIGURE 8. The boundary (66) between steady B- and C-type shocks for monatomic (y = 2, upper
curve) and diatomic (y = I, lower curve) gases. C shocks are found in the region below the curves and
B shocks above. The circle, square, and triangle mark the cases shown in figures 3, 4(a) and 4(b)
respectively. The dashed lines are for F,/P, = v.
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FIGURE 9. Typical phase (solid lines) and group (dashed lines) velocities for very small bubbles for
which dissipative effects are very strong. The case shown here corresponds to R, = 20 pm,
P =0.1MPa, f=1%.

represented by a single curve that we show in figure 8. The lower curve is for y = {
(diatomic gases) and the upper one for v = 2 (monatomic gases). The region below
these curves corresponds to C shocks, and the region above to B shocks. Since the
maximum of the phase velocity curve is the highest for adiabatic bubble behaviour,
which is approximated by large bubbles, these curves tend asymptotically to y for large
bubble radii. The criterion P,/ P, = y for transition from B to C shocks, proposed by
Nigmatulin & Shagapov (1974), is thus seen to be approximately valid for large
bubbles. In figure 8 the example of figure 3 is marked by the circle, that of figure 4(a)
by the square, and that of figure 4(b) by the triangle. It is seen that all these cases



Shock waves in dilute bubbly liquids 369

2.0

1.2 F

— L — 1
0 0.01 0.02 0.03 0.04 0.05
Time (ms)

FiGure 10. Examples of steady shock waves in a mixture containing very small bubbles with
P/P, =185, P, =0.1 MPa, f = 1%. The cases shown are, from the left, R, = 10, 20, 26, 30 and
40 pm. Transition between the 4 and B type is estimated to occur at around 26 pm.

conform with the proposed criterion. We have encountered a similar favourable
comparison in all the other cases that we have tested.

The mutual relationship between the phase and group velocities shown in figures 6
and 7 undergoes a marked qualitative change for very small bubble radii. An example
is shown in figure 9 which refers to the case £,/P, = 1.85, R, = 20 pm, P, = 0.1 MPa,
B = 1%. Now dissipative effects are very pronounced and the group velocity does not
increase in the neighbourhood of zero frequency, but starts decreasing immediately as
for the polytropic case shown in figure 6. We thus expect an A-type shock structure to
become possible in these conditions, as indeed is seen in the first two examples of figure
10 corresponding to R, = 10 and 20 ym, P,/P, =185, P, =0.1 MPa, f=1%. We
have verified numerically that the wavelength of the oscillations visible in this figure is
quite close to the complex root of (51) mentioned before. In this parameter range the
quantity P, previously defined ceases to exist.

On the basis of the preceding analysis, one may expect the transition between B- and
A-type steady waves to take place when the second derivative of the group velocity
evaluated at zero frequency vanishes. A quantitative expression of this criterion may
be found from (59) from which we obtain

20 y—=1VP R v—1 u ui
i) ol 16,0
( PR\ 5y ) pLx? Sy pox  pPLPR:

20 \[20=D@By+DRR ]}_
+2(3 PaRa)[ 525y* pLX’ 2jy=0- @D

Shocks of the B type correspond to the quantity in the left-hand side being positive.
The common factor 3—2a/P, R, is positive for most cases of interest. This relation is
only approximate insofar as it neglects liquid compressibility and the complex nature
of the dispersion relation. It is shown in suitable non-dimensional variables in figure
11 for u; = 0, where the circles correspond, from left to right, to the cases illustrated,
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FiGURE 11. Boundary (67) between B-type (above the line) and A4-type (below the line) steady shock

waves. The circles correspond, from left to right, to the waveforms shown (from left to right) in figure
10.

in the same order, in figure 10. For B,/P, = 1.85, P, =0.1 MPa, g =1%, it gives
R, ~ 28 um. A direct solution of the zero-second-derivative condition leads to
R, ~ 26 uym, again with the neglect of the imaginary part of the dispersion relation.
According to the previous criterion, of the shock profiles of figure 10, the first two,
corresponding to R, = 10 and 20 pm should thus be of the 4 type and the last two,
corresponding to R, = 30 and 40 um, of the B type. The first profile is clearly of the
A type, while the case is less clear-cut for the following one. The proposed criterion is
clearly not as precise as that for transition from B to C shocks, most likely because of
the increased dissipative effects in this case.

6. Comparison with experiment

Detailed experimental data suitable for a test of the present theory are available in
a thesis by Noordzij (1973). He used two vertical tubes with an inner diameter of
55 mm and lengths of 4.5 and 2.5 m. An air chamber above the bubbly liquid could be
maintained at low pressure by means of a pump. To start the experiment a diaphragm
separating the chamber from the atmosphere was broken, with a consequent abrupt
rise of the pressure acting on the free surface of the mixture and the production of a
shock. We provide in tables 1 and 2 comparisons between Noordzij’s data and the
results of the present model for the shock speed and the wavelength A of the first
oscillation of the 4- and B-type shocks defined in figure 12. (This figure is the steady
wave profile for the case R, =1mm, P, =0.1 MPa, P /P, =15, f=1%. The
quantity A is similar to A, considered in §4.3 above, which however was defined as the
wavelength of the oscillations near the back of the wave rather than near the front as
here.)

In the tables the columns marked EXP show the data. Those with the heading UNST
have been obtained by solving the unsteady problem up to the time necessary for the
wave to reach the position at which the data were taken, while those marked ST
correspond to steady waves. The difference between quantities in the last two columns
gives a measure of the ‘degree of unsteadiness’ of the wave at the position at which the
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Results
Conditions

— Velocity (m s™) A (mm)
R, P x10° . x

P/P, (mm) (Nm? (%) (m) EXP UNST ST EXP UNST ST

1.10 1.05 1.14 0.85 2.2 125 126.72  114.17 125 119.8 —
1.12 1.09 1.15 1.72 23 90 89.08 81.46 90 90.2 —
1.12 1.36 1.03 1.96 1.2 76 80.75  72.24 91 95.4 —
1.16 1.06 1.13 1.69 2.6 86 89.79  82.90 86 81.9 —
1.16 1.36 1.08 1.43 22 94 97.06  88.08 94 107.9 —
1.18 1.00 1.09 1.12 23 111 109.18 100.79 88 88.3 —
1.18 1.31 0.97 3.23 1.2 57 61.45  56.08 45 65.2 —
1.21 1.41 0.97 1.59 1.2 81 89.33  80.87 65 93.5 —
1.22 1.24 1.00 34 2.1 62 60.44  56.43 62 63.2 —
1.26 1.29 0.89 3.8 1.1 57 55.29  51.18 45 579 —

23

1.2

1.28 1.00 1.02 09 115 120.71  113.22 80 8L.5 84.6
1.29 1.35 0.90 2.29 . 70 7279 67.05 49 67.4 -
1.32 1.29 0.99 2.68 2.6 74 69.39  65.76 51 65.6 —
1.41 1.19 0.92 0.87 2.6 116  121.06 114.77 93 85.8 84.6
1.41 1.31 0.87 2.01 22 76 77.29  73.55 57 65.3 63.1
1.51 1.21 0.89 0.89 23 63 61.60  59.75 44 479 40.5
1.62 1.17 0.82 1.69 22 93 8595 83.45 56 52.2 51.7
1.74 1.12 0.74 1.60 22 81 86.23  84.43 56 49.5 47.5
1.85 1.15 0.58 1.92 1.2 78 72.07  70.40 47 43.8 38.8
2.00 1.48 0.69 391 22 62 56.94  55.96 31 40.4 36.2
2.13 1.13 0.60 1.04 2.2 122 105.87 104.25 55 50.1 47.1
2.25 1.32 0.60 3.37 22 60 60.17  59.62 30 36.6 30.3
2.51 1.11 0.53 1.43 22 93 91.48  90.76 28 40.1 36.8
3.04 1.24 0.46 2.77 22 70 67.13  66.91 21 31.7 26.5
3.67 1.14 0.31 2.26 1.2 75 67.07 66.83 26 29.0 24.1
4.05 1.36 0.35 3.64 1.2 63 59.21  58.78 19 28.8 22.6

TaBLE 1. The experimental results of Noordzij (1973) for B shocks are shown in the columns marked
EXP. The columns bearing the headings UNST and ST show the numerical results for transient and
steady shocks respectively.

Results

Conditions

. Velocity (m s™) A (mm)
R, Px10 x

B/P, (mm) (Nm?% (%) (m) EXP UNST ST EXP UNST ST
113 141 0921 219  0.19 73 7410 6492 87 6505  —
118 135 0852 429 0.8 52 5097 4562 36 4991  —
128 135 0780 436 014 51 4961 4509 26 4522 @ —
138 143 0718 370 009 61 5319 4876 43 4310 33.85
1.51 134 0650 123 0.9 88  91.82 8408 26 5270 7170
1.80 130 0602 231 021 78 7055 6451 38 4466 41.20
251 154 0377 534 018 47 4318 39.67 21 3265 2654

3.10 1.33 0.313 2.34 0.2 74 65.74  60.66 26 3551  29.01
TABLE 2. The experimental results of Noordzij (1973) for 4 shocks. Column headings as for
table 1.

data were taken. It is seen that the differences in wave speed are at most of the order
of 10%, which is within the error band of much of the data. Table 1 gives results for
B- and C-type shocks. For the latter ones, and for the marginal B cases, the quantity
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FIGURE 2. Definition of the quantity A of tables I and 2. This figure is the steady wave profile
for the case P,/P,= 1.5, f=1%, R, = 1 mm, P, = 0.1 MPa of figure 5.

A is either undefined or too imprecisely determinable and the corresponding entry is
blank. Of the A-type shocks, considered in table 2, the first two evolve to steady C type,
the third one is borderline, and the remaining ones are of the B type.

In general a good agreement between theory and data can be observed in table 1,
although differences are appreciable in a few cases. As A depends also upon the shock
velocity (see e.g. §4.3), it is not surprising that discrepancies are found for both
quantities together. We have failed to find a systematic pattern among the cases of
table | that agree or disagree with theory and experimental error may play a role. For
the data of table 2 it appears that the comparison is worse the stronger the shock and
the closer the measurement position to the boundary.

Noordzij’s A-shock data were all taken within about 0.2 m from the surface of the
bubbly liquid, a region where it is conceivable that the flow has an appreciable three-
dimensional structure. The more recent set of data provided by Beylich & Giilhan
(1990) is not subject to this objection. These authors have carried out an experimental
study of shock waves using gases with strongly different values of y: helium (y = $),
nitrogen (y = 1), and SF, (y ~ 1.09). The region occupied by the bubbly liquid had a
length of slightly less than 2 m, and they used shock strengths P,/ P, of the order of
1.5-2. We compare the experimental wave profiles measured 0.975 m from the liquid
free surface with the calculated ones in figure 13. It is clear that a significant
discrepancy between theory and experiment exists. A striking difference — which is also
encountered in some of the data of tables 1 and 2 —is between the computed and
measured wavelengths. It may be pointed out that Beylich & Giilhan (1990) were only
able to reconcile their model with the data by introducing a turbulent diffusivity more
than 1000 times bigger than the molecular viscosity of their water—glycerin mixture.

FIGURE 13. The line with circles shows the data from Beylich & Giilhan for (a) helium bubbles (their
figure 9, P, =0.111 MPa, /P, =1.78, R, = 1.15mm, y = 1.67, #, = 0.28 %); () nitrogen bubbles
(their figure 12, P, = 0.111 MPa, B, /P, = 1.57, R, = 1.15mm, y = 1.4, 8, = 0.25%); (c) SF, bubbles
(their figure 13, £, = 0.111 MPa, F,/P, = 1/81, R, = L.15mm, y = 1.09, 8, = 0.25%). The solid line
is the predicted waveform according to the theory of §2. The dashed line is the predicted waveform
including the gas—liquid relative motion effects according to the model of §6.
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FIGURE 13. For caption see facing page.
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FiGure 14. Computed steady waveform for the case of figure 13(b).

Figure 14 shows the steady profile for the nitrogen bubble case of figure 13(b). It is
interesting to observe the increase of the oscillation period as the wave evolves, but the
steady waveform does not seem to be any closer to the measurements than the transient
one of figure 13(b). We simulated the propagation of this wave for over 8 m of travel
distance and found that the waveform was still evolving and significantly different from
the steady result of figure 14. This seems to indicate that the waves observed by Beylich
& Giilhan were far from having reached steady conditions so that their application of
the steady form of the theory to data reduction may not have been appropriate.

In order to investigate some possible sources of these differences we have combined
the bubble dynamics model described in §2 with a more sophisticated formulation of
the mixture behaviour, as follows. The usual form of the liquid continuity equation in
averaged two-phase flow models is

=P+ 910 =Ppyu] =0, (@)

Since the gas density is much smaller than the liquid density, the average liquid velocity
u, is very nearly equal to the average mixture velocity u in (1) and (2). In addition,
O(u) = O(p) (cf. (18)) and therefore, aside from the very small liquid compressibility
effects, this equation coincides to O(f) with the corresponding one, (1), used in the
present model.

A standard (if approximate) form of the total momentum conservation for the
mixture is

d 0 opP
(1o Frut) - (©9)

—

Equations (68) and (69) coincide with the model used by van Wijngaarden (1968).
To close the model one needs a balance equation for the bubble number density »

and for the bubble-field average velocity. For the first one we take the standard form

a—n+V-(nv) = (. (70)
ot
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Since one expects O(v) ~ O(u), this relation shows that variations in # are O(f), as
stated in §2.

Many different forms have been proposed for the equation for the relative motion.
Here we use that of van Wijngaarden (1972) and Noordzij & van Wijngaarden (1974),

namel
’ LN CA W CCONICA | P YT (71)
Pel\ar ™ Vox) \or THex)| T T e R '

The term on the left-hand side is proportional to the added mass of the bubble and the
last one on the right-hand side accounts for the drag according to the high-Reynolds-
number formula of Levich.

We have repeated the calculations of figure 13 using this more complex formulation
for the mixture behaviour and the same model as before for the bubble dynamics. The
results for the cases studied by Beylich & Giilhan (1990) are shown by the dashed lines
in figure 13. Although the additional physical mechanisms contained in the more
complex model — and primarily the phase slip — are of some importance, it is seen that
their inclusion merely affects the phase of the oscillations, but not their period and does
not therefore improve the comparison with the data. We have performed similar
calculations for the examples with f~ 2% of Beylich & Giilhan with similar
conclusions.

One of the reviewers suggested using the speed of sound in the mixture
(approximately given by (23)) rather than in the pure liquid in the Keller equation (8).
We have tried this for the case of figure 13(b), finding an essentially equal wavelength
with a slightly higher attenuation. The large discrepancy with the data remains.

7. Discussion of previous work

The results described in the previous sections throw an interesting light on previous
research on this problem to a discussion of which we now turn.

The work conducted up to the early 1970s is summarized in van Wijngaarden (1972)
and Noordzij & van Wijngaarden (1974). In the latter paper the existence of the three
different wave profiles shown in figure 1 was reported, and it was pointed out that some
type of relaxation process was necessary to account for them. Relative motion between
the phases was introduced as a likely candidate, while the thermal behaviour of the
bubbles was described by the simple polytropic relation (14). Although Noordzij & van
Wijngaarden were able to demonstrate theoretically the existence of the three wave
profiles observed in the experiments, agreement between their model and their data was
at best inconclusive. The modelling of relative motion of Noordzij & van Wijngaarden
was very similar to the one used before in §6, where its effect was shown to be small
as also found by Nigmatulin (1982).

Another influential paper on shock waves in bubbly liquids was published at about
the same time by Nigmatulin & Shagapov (1974) (see also Nigmatulin 1991). They
seem to have been the first to realize that a relatively long time and propagation
distance are necessary for the establishment of a steady wave profile which implied that
this steady condition had not been reached in several of the available data. In their
work the heat transfer between the gas and the liquid was modelled with a constant
value of a Nusselt number defined by

2R OT

Nu=—r—7

a

(72)

AL ’
or [,-re
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FiGURE 15. Waveform (solid line) and Nusselt number (dashed line) calculated according to (72) for
the example of (a) figure 3, (b) figure 4(a), (c) figure 4(b). The solid line is the complete calculation,
and in (@) the short-dashed line is the wave profile for Nu = 10, and the dash-and-dotted line the wave
profile for Nu = 20.
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where T is the undisturbed liquid temperature and (T’ is the mass-weighted average
gas temperature 3 RO PR’

(T>=—Ez—afo pTridr = Twm. (73)
The dashed lines in figure 15 show this quantity for the shock waves of figures 3 and
4. It is evident that the complexity of the gas-liquid heat transfer gives rise to a strong
variability of Nu along the wave. Aidagulov, Khabeev & Shagapov (1977) tested the
approximation Nu ~ constant against a full calculation based essentially on the same
equations as here and concluded in its favour. We test this statement for the case of
figure 3 in figure 15(a). Here the solid line is the full calculation, the short-dashed line
the wave profile for Nu = 10, and the dash-and-dotted line the wave profile for
Nu = 20. While the general form of the wave is preserved by the approximation, the
detailed structure is not. We have reached similar conclusions for the other examples
shown before.

The lines of figure 15 exhibit oscillations near the front and the back of the wave.
These are actually numerical artifacts due to the fact that (T is very close to T, in
these regions so that the division by their difference in (72) is inaccurate. To further
examine this point we have calculated analytically the value of Nu near the wave front
and back in the linearized approximation of §4 finding, near the back,

_ 2 YKy
Ny, = 3 1-Kbg . (74)
For the three examples of figure 15 this relation gives 7.976, 8.625, and 7.976
respectively, which agree very closely with the numerical results. (For the similarity
between the first and third values compares the comment on «, in §4.3). Near the wave
front 2 y—x
— a2
Nu, = eV Q2 75)
which gives the values 28.14, 14.05, 39.42. The substantial agreement with the
computed results is clear also in this case in spite of the aforementioned numerical
difficulties.

Another group of Russian researchers has been active in this area (see e.g.
Kutznetsov et al. 19784, b; Gasenko, Nakoryakov & Shreyber 1979; Nakoryakov,
Shreyber & Gasenko 1981). They made use of a polytropic pressure—volume relation
and of an effective liquid viscosity augmented to incorporate in an artificial way the
effects of pressure radiation and gas-liquid heat transfer. Our detailed study of this
approach (Prosperetti et al. 1988) demonstrates its dangers in the neighbourhood of
nonlinear resonances for the case of a single bubble. Its accuracy for the motion caused
by the propagation of pressure waves in a bubbly liquid has not been explored. These
authors derived several approximate nonlinear wave equations (e.g. Korteweg—de
Vries-Burgers, Boussinesq, and others) to describe phenomena in different ranges.
Although they report a general consistency between their models and data, it is difficult
on the basis of the results that they show to assess the degree with which this
consistency extends to the quantitative realm. As a matter of fact, on the basis of our
study, we are doubtful that the simplified approach they take to describe the gas—liquid
interaction would result in any great accuracy. A similar mathematical model was used
by Kedrinskii (1972, 1981) who studied the interesting problem of the interaction and
transmission of a shock wave by a bubble layer, again finding a general consistency
between theory and data.
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Drumbheller, Kipp & Bedford (1982) use a variational formulation to derive a set of
averaged equations for bubbly liquids. They make a statement as to the importance of
liquid compressibility which in their model appears in an ad hoc term. Although
obtained from their variational scheme, this term is inconsistent with the correct
formulation incorporated in (8) which is derived from first principles (Prosperetti &
Lezzi 1986). To explore the importance of liquid compressibility we have compared
simulations with finite and infinite values of the liquid speed of sound and found nearly
indistinguishable results. It appears therefore likely that Drumbheller et al.’s conclusion
in this respect is vitiated by an incorrect incorporation of this effect in their
mathematical model. Drumheller er al. also tried to model the thermal processes
affecting the gas motion by appealing to linear theory, essentially (61) and (62). For this
purpose they had to estimate a dominant frequency of the motion, and to interpret in
a nonlinear context the complex result of the linear theory. This they did by taking the
modulus, a procedure that evidently cannot take advantage of the important phase
information contained in the linear result. Comparison with the data of Kutznetsov
et al. (1978) has mixed success, while that with the data of Noordzij & van Wijngaarden
(1974) is rather poor. In that study the theoretical gas pressure is compared with the
measured liquid pressure. The difference between these quantities must be the entire
left-hand side of the Keller (8) or Rayleigh—Plesset (30) equations and it is therefore
unclear what to make of these results even for the cases in which agreement is claimed.

Tan & Bankoff (1984 4) employed a standard two-fluid model in their study of very
strong pressure waves in bubbly liquids. They essentially made use of a polytropic
pressure—volume relation cast in the form of an effective energy equation. Their results
exhibit the same behaviour as those of figure 2(c) and therefore, although no
comparison with data was attempted in their paper, we feel justified in believing that
a poor result would have been found had such a comparison been carried out. In
another paper (Tan & Bankoff 1984 b), these authors also present some experimental
results on the speed of shock waves much stronger than those considered here. Since
their tube was only 2.7 m long, their results must correspond to evolving waves
although they were able to fit the measured shock velocities by the Campbell & Pitcher
(1958) formula to within approximately 10%.

The most recent work on this subject is that of Beylich & Giilhan (1990), to whose
data we have already referred. In their modelling these authors tried to incorporate a
number of physical effects. Their mass and momentum equations are similar to (68)
and (69), but the latter incorporates a ‘turbulent’ diffusivity for which, as already
noted, they had to choose a value over 1000 times the molecular one in order to fit the
amplitude of the oscillations. For the gas thermal behaviour, after some manipulations
not unlike those used by Flynn (1975), they derived an approximate form inspired in
its structure by the quasi-adiabatic approximation of Miksis & Ting (1984). Although
their work goes beyond that of these authors, Beylich & Giilhan do not make use of
systematic perturbation techniques and it is difficult to judge the accuracy of their final
result. Our experience is that bubble behaviour depends critically on the gas energy
equation and that even seemingly very reasonable approximations tend to introduce
large errors (Prosperetti 1991; Kamath, Oguz & Prosperetti 1992). Beylich & Giilhan
also used a modification of the incompressible Rayleigh—Plesset equation with
coefficients modified to take into account nearest-neighbour interactions. They found
that their result for the wavelength of the oscillations was sensitive to the value chosen
for these coefficients and, in order to match the data, they had to select not only a
magnitude much bigger than that suggested by the study of Rubinstein (1985), but also
with the opposite sign.
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8. Conclusions

In our study of weak pressure waves in dilute bubbly liquids we have used a model
containing all — and only — the effects important to first order in the bubble volume
fraction. Our intent has been to explore the strengths and weaknesses of this limited,
but mathematically well-justified, model, rather than to develop a more ‘complete’
one.

The comparison with experimental data measured sufficiently far from the initiation
of the shock wave is in most cases very good. Where some disagreement exists,
experimental error is a reasonable explanation. On the other hand, in the initial region,
where the shock is thin and rapidly evolving, the theory does not compare well with
data. An analysis of the most obvious effects — nonlinearities and relative motion
between gas and liquid — shows that neither is sufficiently strong to account for the
disagreement. Previous authors have also been faced by the same problem and had to
have recourse to more or less ad hoc ‘fixes’ to match the data. It can thus fairly be
stated that none of the models developed so far captures the physics of a thin and
steeply rising pressure wave in a bubbly liquid. Beyond this negative result, we have
unfortunately been unable to draw any conclusion as to nature of the physical
processes Whose omission prevents the models from matching the data. This evidently
represents a major problem in the theory of bubbly liquids.

The thermal energy exchange between the bubbles and the liquid results in a rather
unique dependence of the phase and group velocities upon frequency. It has been
shown how this unusual dependence is responsible for much of the complexity and
richness of the bubbly liquid behaviour.

The results presented here have been obtained for the somewhat artificial case of
equal-size bubbles. The extension of the theory to a distribution of bubble radii is
conceptually straightforward, although computationally demanding. As long as the
timescale for the wave is much longer than the bubbles’ resonance period, linear theory
suggests that the effects of multiple bubble sizes should not be major. This however
remains a potentially important point that must form the object of a separate
investigation.

The authors are grateful to Professor L. Ostrovsky, Professor A. Beylich, and
Professor Y. Matsumoto for several insightful conversations on the subject of this
paper. This study has been supported by NSF under grant No. CTS-8918144 and DOE
under grant No. DE-FG02-89ER14043.
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